UserInput
from neo4j_runway import UserInput
A container for user provided information about the data.
Attributes
----------
general_description : str, optional
A general description of the CSV data.
data_dictionary : Dict[str, str], optional
A mapping of the desired columns to their
descriptions.
If multi-file, then each file name should contain
it's own sub dictionary.
The keys of this argument will determine which CSV
columns are
evaluated in discovery and used to generate a data
model.
use_cases : List[str], optional
A list of use cases that the final data model should
be able to answer.
Class Methods
init
A container for user provided information about the data.
Parameters
----------
general_description : str, optional
A general description of the CSV data, by default =
""
data_dictionary : Dict[str, str], optional
A mapping of the desired columns to their
descriptions.
If multi-file, then each file name should contain
it's own sub dictionary.
The leaf values of this argument will determine
which columns are
evaluated in discovery and used to generate a data
model.
use_cases : List[str], optional
A list of use cases that the final data model should
be able to answer.
validate_data_dictionary
Class Properties
allowed_columns
The allowed columns.
Returns
-------
Union[List[str], Dict[str, List[str]]]
single file : A list of columns from the DataFrame.
Multi file : a dictionary with keys of file names
and A list of columns for each file.
is_multifile
Whether the data dictionary covers multiple files.
Returns
-------
bool
pretty_use_cases
Format the use cases in a more readable format.
Returns
-------
str
The formatted use cases as a String.